
Supplementary Materials

A. Efficient Implementation Procedures of Adaptive Sampling

Algorithm 2 Updating Tree T
1: Input: old tree T , new value for i-th leaf π′i
2: Compute ∆ = π′i − πi
3: node = leaf(i)
4: while node.parent 6= NULL do
5: node = node+ ∆
6: node = node.parent
7: end while
8: node = node+ ∆
9: Output: new tree T ′

Algorithm 3 Sampling Based on Tree T

1: Input: T , R ∈
[
0, 1

αk

∑n
j=1 πj

]
, C = 1−αk

nαk

∑n
j=1 πj

2: node = root(T )
3: while node is not a leaf do
4: if R > node.sumL + node.left.num× C then
5: R = R− node.sumL − node.left.num× C
6: node = node.right
7: else
8: node = node.left
9: end if

10: end while
11: Output: node.ind

B. Discussion on the Assumptions

The following proposition shows that Assumption 3 holds with high probability for large enough N .

Proposition 1. Suppose that N ≥ 4n log n/(1 − α) and there are K iterations in total, then Assumption 3 holds for all K
iterations with probability at least 1− d2K/Nen .

Proof. Firstly, in the first N/2 iterations, for any 1 ≤ j ≤ n, j has been picked with probability at least

1−
(

1− min
1≤k≤N/2

{pkj }
)N/2

≥ 1−
(

1− 1− α
n

)2n logn/(1−α)

≥ 1− 1

n2
.

Thus, in the first N/2 iterates, all indices have been picked at least once with probability at least 1− 1
n . Furthermore, we know

that, for iterations between (k − 1)N/2 + 1 and kN/2 for each 1 ≤ d2K/Ne, all indices have been picked at least once with
probability at least 1− d2K/Nen . Once this holds, since every N iterations must contain at least one interval [(k−1)N/2+1, kN/2]
for some 1 ≤ d2K/Ne, each index has been picked at least once, i.e., Assumption 3 holds.

C. Useful Lemmas

The stochastic gradient at certain iterate w in SGD-AIS is 1
npi
∇fi(w), where i follows the most recently updated distribution

p. As discussed for (6) and (7), p is a mixture of the sub-optimal distribution and the uniform distribution. To prove our desired
result, we introduce an auxiliary distribution pw, which is a mixture of the optimal distribution and the uniform distribution.
More specifically,

pwi = α
‖∇fi(w)‖2∑m
j=1 ‖∇fj(w)‖2

+ (1− α)
1

n
, ∀i ∈ [n]. (26)



Accordingly, an intermediate stochastic gradient is defined as 1
npwi
∇fi(w), where i ∼ pw. We first prove that the variance

of this intermediate stochastic gradient Vari∼pw

[
1

npwi
∇fi(w)

]
is strictly smaller than the variance of uniform distribution

Vari∼U [∇fi(w)], which is formally stated as Lemma 1.

Lemma 1. Denote U as the uniform distribution on [n], and pw is the distribution defined as (26). If Assumption 2 holds,
then for all α ∈ [α, α], we have

Vari∼U [∇fi(w)]−Vari∼pw

[
1

npwi
∇fi(w)

]
≥ αρG2. (27)

Proof. Since both ∇fi(w) and 1
npwi
∇fi(w) are unbiased estimator of ∇F (w), we have

Vari∼U [∇fi(w)] = E[‖∇fi(w)‖22]− ‖E[∇fi(w)]‖22 =
1

n

n∑
i=1

‖∇fi(w)‖22 − ‖∇F (w)‖22,

and

Vari∼pw

[
1

npwi
∇fi(w)

]
= E

[∥∥∥∥ 1

npwi
∇fi(w)

∥∥∥∥2

2

]
−
∥∥∥∥E [ 1

npwi
∇fi(w)

] ∥∥∥∥2

2

=
1

n2

n∑
i=1

1

pwi
‖∇fi(w)‖22 − ‖∇F (w)‖22.

By definition of pwi and the fact that (ax+ by)(a/x+ b/y) ≥ (a+ b)2 for all x, y, a, b > 0, we have

1

pwi
=

1

α ‖∇fi(w)‖2∑m
j=1 ‖∇fj(w)‖2 + (1− α) 1

n

≤ α
∑n
j=1 ‖∇fj(w)‖2
‖∇fi(w)‖2

+ (1− α)n,

holds for any α ∈ [α, α]. Therefore,

Vari∼U [∇fi(w)]−Vari∼pw

[
1

npwi
∇fi(w)

]
=

1

n

n∑
i=1

‖∇fi(w)‖22 −
1

n2

n∑
i=1

1

pwi
‖∇fi(w)‖22

≥ 1

n

n∑
i=1

‖∇fi(w)‖22 −
1

n2

n∑
i=1

(
α

∑n
j=1 ‖∇fj(w)‖2
‖∇fi(w)‖2

+ (1− α)n

)
‖∇fi(w)‖22

=
α

n

n∑
i=1

‖∇fi(w)‖22 −
α

n2

n∑
i=1

n∑
j=1

‖∇fi(w)‖2‖∇fj(w)‖2

=
α

2n2

 n∑
i=1

2n‖∇fi(w)‖22 −
n∑
i=1

n∑
j=1

2‖∇fi(w)‖2‖∇fj(w)‖2


=

α

2n2

n∑
i=1

n∑
j=1

(‖∇fi(w)‖2 − ‖∇fj(w)‖2)2

≥αρG2,

(28)

where the last inequality follows from Assumption 2.

Next, we would like to bound the difference between Vari∼p

[
1
npi
∇fi(w)

]
and the intermediate variance

Vari∼pw

[
1

npwi
∇fi(w)

]
. Lemma 2 plays a key role to achieve this.

Lemma 2. Consider the k-th iteration. Denote τj = max{k′ : k′ ≤ k, ik′ = j} for all j ∈ [n]. Let αk ∈ (α, α) be in Algorithm
1. p is the most recently updated probability distribution in Algorithm 1, i.e.,

pi = αk

(
‖∇fi(wτi)‖2∑n
j=1 ‖∇fj(wτj )‖2

)
+ (1− αk)

1

n
. (29)

pwki is defined as the right hand side of equation (26), i.e.,

pwki = αk

(
‖∇fi(wk)‖2∑n
j=1 ‖∇fj(wk)‖2

)
+ (1− αk)

1

n
. (30)



By (16) and Assumption 3, as well as η := max{ηk : k ∈ N} ≤ (1− α)δ/NL, we have

n∑
i=1

|pi − pwki | ≤
2αLηm

(1− α)δ − Lηm
. (31)

Proof. For j ∈ [n], we first consider the difference of the following gradient norms,

|‖∇fj(wτj )‖2 − ‖∇fj(wk)‖2| ≤ ‖∇fj(wτj )−∇fj(wk)‖2
≤ L‖wτj −wk‖2

= L

∥∥∥∥∥
k∑

κ=τj

ηκ
1

npiκ
∇fiκ(wκ)

∥∥∥∥∥
2

≤ Lη
k∑

κ=τj

∥∥∥∥ 1

npiκ
fiκ(wκ)

∥∥∥∥
2

≤ Lη
k∑

κ=τj

G

1− α

=
GLη

1− α
(k − τj + 1)

≤ GLηN

1− α
.

(32)

The fourth inequality in (32) is bacause (29) implies piκ > (1−α)/n, and (16) implies ‖∇fiκ(wκ)‖2 ≤ G. The last inequality
in (32) is because Assumption 3 implies that k + 1− τj ≤ N . (32) further implies that, for all j ∈ [n]

‖∇fj(wk)‖2 −
GLηN

1− α
≤ ‖∇fj(wτj )‖2 ≤ ‖∇fj(wk)‖2 +

GLηmN

1− α
. (33)

Thus,

‖∇fi(wk)‖2 − GLηN
1−α∑n

j=1 ‖∇fj(wk)‖2 + GLηNn
1−α

≤ ‖∇fi(wτi)‖2∑n
j=1 ‖∇fj(wτj )‖2

≤
‖∇fi(wk)‖2 + GLηN

1−α∑n
j=1 ‖∇fj(wk)‖2 − GLηNn

1−α
, (34)

where the second inequality is ensured to be positive by (16) and η < (1 − α)δ/NL. (34) implies that at least one of the
following two inequalities hold, i.e.,

|pi − pwki | ≤ α

∣∣∣∣∣ ‖∇fi(wk)‖2 + GLηN
1−α∑n

j=1 ‖∇fj(wk)‖2 − GLηNn
1−α

− ‖∇fi(wk)‖2∑n
j=1 ‖∇fj(wk)‖2

∣∣∣∣∣
= α

GLηN
1−α

∑n
j=1 ‖∇fj(wk)‖2 + GLηNn

1−α ‖∇fi(wk)‖2(∑n
j=1 ‖∇fj(wk)‖2 − GLηNn

1−α

)∑n
j=1 ‖∇fj(wk)‖2

:= A,

(35)

or

|pi − pwki | ≤ α

∣∣∣∣∣ ‖∇fi(wk)‖2 − GLηN
1−α∑n

j=1 ‖∇fj(wk)‖2 + GLηN
1−α

− ‖∇fi(wk)‖2∑n
j=1 ‖∇fj(wk)‖2

∣∣∣∣∣
= α

GLηN
1−α

∑n
j=1 ‖∇fj(wk)‖2 + GLηNn

1−α ‖∇fi(wk)‖2(∑n
j=1 ‖∇fj(wk)‖2 + GLηNn

1−α

)∑n
j=1 ‖∇fj(wk)‖2

:= B.

(36)



It is obvious that A ≥ B, thus inequality (35) always holds. Taking i = 1, 2, . . . , n in (35) and summing the n inequalities,
this yields

n∑
i=1

|pi − pwki | ≤ α
GLηNn

1−α
∑n
j=1 ‖∇fj(wk)‖2 + GLηNn

1−α
∑n
i=1 ‖∇fi(wk)‖2(∑n

j=1 ‖∇fj(wk)‖2 − GLηNn
1−α

)∑n
j=1 ‖∇fj(wk)‖2

= α

GLηNn
1−α∑n

j=1 ‖∇fj(wk)‖2 − GLηNn
1−α

=
αGLηNn

(1− α)
(∑n

j=1 ‖∇fj(wk)‖2
)
−GLηNn

≤ αGLηNn

(1− α)nδG−GLηNn

=
αLηN

(1− α)δ − LηN

(37)

where the second inequality comes from (16). Note that η < (1−α)δ
NL , thus the upper bound in (37) is positive.

D. Proof of Theorem 1

Proof. We first consider the following bound∣∣∣∣Vari∼p

[
1

npi
∇fi(w)

]
−Vari∼pw

[
1

npwi
∇fi(w)

]∣∣∣∣ =

∣∣∣∣∣ 1

n2

n∑
i=1

(
1

pi
− 1

pwi

)
‖∇fi(w)‖22

∣∣∣∣∣
≤ G2

n2

n∑
i=1

∣∣∣∣ 1

pi
− 1

pwi

∣∣∣∣
=
G2

n2

n∑
i=1

|pwi − pi|
pipwi

≤ G2

n2

(
n

1− α

)2 n∑
i=1

|pwi − pi|

≤ G2

(1− α)2

αLηN

(1− α)δ − LηN

=
αG2LηN

(1− α)3δ − (1− α)2LηN
,

(38)

where the last inequality follows from Lemma 2, and the final obtained bound in is positive since η < (1−α)3δρ
(1−α)2NLρ+NL < (1−α)δ

NL .
Therefore,

Vari∼p

[
1

npi
∇fi(w)

]
≤ Vari∼pw

[
1

npwi
∇fi(w)

]
+

αG2LηN

(1− α)3δ − (1− α)2LηN

≤ Vari∼U [∇fi(w)]− αρG2 +
αG2LηN

(1− α)3δ − (1− α)2LηN

= Vari∼U [∇fi(w)]−
(
αρ− αLηN

(1− α)3δ − (1− α)2LηN

)
G2

= Vari∼U [∇fi(w)]− γG2,

(39)

where the second inequality results from Lemma 1. In addition, γ = αρ− αLηN
(1−α)3δ−(1−α)2LηN > 0 since η < (1−α)3δρ

(1−α)2NLρ+NL ,
and γ < 1 since α, ρ < 1

E. Proofs of Theorems 2 & 3

Prepared with the above two lemmas, we can finally connect our desired variances Vari∼p

[
1
npi
∇fi(w)

]
and

Vari∼U [∇fi(w)] by bridging over the intermediate variance Vari∼pw

[
1

npwi
∇fi(w)

]
.



Proof of Theorem 2. For all k ∈ N, conditioning on wk, along with (41), we have

Ei∼p[F (wk+1)]− F (wk) ≤ −2ησ(F (wk)− F ∗) +
η2L

2
(1− γ)G2.

Subtracting F ∗ from both sides, taking total expectation, and rearranging, this yields

E[F (wk+1)− F ∗] ≤ (1− 2ησ)E[F (wk)− F ∗] +
η2L

2
(1− γ)G2.

Applying this inequality repeatedly through iteration k ∈ N to get

E[F (wk)− F ∗] ≤(1− 2ησ)k−1(F (w1)− F ∗) +
η2L

2
(1− γ)G2

k∑
l=1

(1− 2ησ)l−1

≤(1− 2ησ)k−1(F (w1)− F ∗) +
ηL

4σ
(1− γ)G2

k→∞−−−−→ηL(1− γ)G2

4σ
,

(40)

where the last limit comes from 1− 2ησ < 1, which is implied by

η <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
<

1

2L
<

1

2σ
,

since δ, ρ ≤ 1.

Proof of Theorem 3. By (23) and the definition of ηk, the following inequality holds for all k ∈ N,

ηk <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
.

For all k ∈ N, conditioning on wk, we have

Ei∼p[F (wk+1)]− F (wk) ≤− ηkEi∼p
[〈

1

npi
∇fi(w),∇F (wk)

〉]
+
η2
kL

2
Ei∼p

[∥∥∥∥ 1

npi
∇fi(w)

∥∥∥∥2

2

]

≤− ηk‖∇F (wk)‖2F +
η2
kL

2

(
Ei∼U

[
‖∇fi(w)‖22

]
− γG2

)
≤− ηk‖∇F (wk)‖2F +

η2
kL

2
(1− γ)G2

≤− 2ηkσ(F (wk)− F ∗) +
η2
kL

2
(1− γ)G2,

(41)

where p denotes the most recently updated sampling distribution in SGD-AIS. In (41), the first inequality is implied by the
L-smoothness of F , the second inequality follows from Theorem 1, the third inequality is due to (16), and the last inequality
are come from strong convexity of F . Subtracting F ∗ from both sides, taking total expectation, and rearranging, this yields

E[F (wk+1)− F ∗] ≤ (1− 2ηkσ)E[F (wk)− F ∗] +
η2
kL

2
(1− γ)G2.

Subtracting F ∗ from both sides, taking the expectation and rearranging, this yields

E[F (wk+1)− F ∗] ≤ (1− 2ηkσ)E[F (wk)− F ∗] +
η2
kL

2
(1− γ)G2. (42)

Then we prove E[F (wk) − F ∗] ≤ ν/(ξ + k) by induction. Firstly, the definition of ν ensures that it holds for k = 1. Then,
assume it holds for some k > 1, it follows from (42) that

E[F (wk+1)− F ∗] ≤(1− 2σβ

ξ + k
)

ν

ξ + k
+
β2L(1− γ)G2

2(ξ + k)2

=
ξ + k − 1

(ξ + k)2
ν − 2(2σβ − 1)ν − β2L(1− γ)G2

2(ξ + k)2

≤ ν

ξ + k + 1
.

(43)

The last inequality holds because of (ξ + k − 1)(ξ + k + 1) < (ξ + k)2 and the definition of ν.



F. Supplementary Convergence Analysis

Theorem 1 holds without requiring the convexity of the objective function F (w), thus we can get the convergence results
of SGD-AIS for the nonconvex cases, which are formally stated as the following two theorems.

Theorem 4. Under Assumptions 1-3, suppose that the objective function F (w) is a L-smooth function, and the SGD-AIS is
run with a fixed stepsize, ηk = η for all k ∈ N, satisfying

0 < η <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
.

Then, the average-squared gradient of F corresponding to the iterates satisfy

E

[
1

K

K∑
k=1

‖∇F (wk)‖22

]
≤ηL

2
(1− γ)G2 +

F (wk)− Finf

Kη

K→∞−−−−→ηL

2
(1− γ)G2.

(44)

Proof. Taking the total expectation of (41) yields

E[F (wk+1)]− E[F (wk)] ≤ −ηE[‖∇F (wk)‖2F ] +
η2L

2
(1− γ)G2.

Summing both sides of this inequality for 1 ≤ k ≤ K and dividing by K gives

E[F (wK+1)]− F (w1)

K
≤ −η

K∑
k=1

E[‖∇F (wk)‖2F ] +
η2L

2
(1− γ)G2.

To get (44), we only need to use the inequality E[F (wK+1)] ≥ Finf .

Theorem 5. Under Assumptions 1-3, suppose that the objective function F (w) is L-smooth, and SGD-AIS is run with a
diminishing stepsize sequence that satisfies, for all k ∈ N,

0 < ηk <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
, (45)

and

AK =

K∑
k=1

ηk =∞, and BK =

K∑
k=1

η2
k <∞. (46)

Then, the average-squared gradient of F corresponding to the SGD iterates satisfy

E

[
1

AK

K∑
k=1

ηk‖∇F (wk)‖22

]

≤L(1− γ)G2BK
AK

+
2 (F (wk)− Finf)

AK

K→∞−−−−→ 0.

(47)

Proof. Similarly, taking the total expectation of (41) yields

E[F (wk+1)]− E[F (wk)] ≤ −ηkE[‖∇F (wk)‖2F ] +
η2
kL

2
(1− γ)G2.

Summing both sides of this inequality for 1 ≤ k ≤ K and dividing by AK gives

E[F (wK+1)]− F (w1)

AK
≤ −E

[
1

AK

K∑
k=1

ηk‖∇F (wk)‖2F

]
+
η2L(1− γ)G2BK

2AK
.

Use the inequality E[F (wK+1)] ≥ Finf , we can easily get the first inequality of (47), while the limitation holds because of
(46).



G. CNN Architecture Used in the Experiments (printed in PyTorch format)
Net(
(conv1): Conv2d(3, 6, kernel-size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel-size=2, stride=2, padding=0, dilation=1, ceil-mode=False)
(conv2): Conv2d(6, 16, kernel-size=(5, 5), stride=(1, 1))
(fc1): Linear(in-features=400, out-features=120, bias=True)
(fc2): Linear(in-features=120, out-features=84, bias=True)
(fc3): Linear(in-features=84, out-features=10, bias=True)
)

H. Dataset Sizes and Algorithmic Parameters
In our experiments, we adopt diminishing stepsizes ηk = β

ξ+k for SGD-based algorithms and constant stepsize η for
SGDm/ADAM-based algorithms. The sizes of the real datasets and specific choices of the parameters are given in the following
tables.

TABLE III: Sizes of Datasets

a2a ijcnn1 w8a gisette

n 2265 49990 49749 6000

d 123 22 300 5000

TABLE IV: Parameters of SGD-based Algorithms for Logistic Regression

a2a w8a ijcnn1 gisette

Stepsize Parameter β 1100 200 100 100

Stepsize Parameter ξ 7000 100000 6000 20000

Regularization Parameter λ 0.01 0.01 0.01 0.01

TABLE V: Parameters of SGD-based Algorithms for SVM

a2a w8a ijcnn1 gisette

Stepsize Parameter β 300 100 1100 50

Stepsize Parameter ξ 7000 100000 6000 500000

Regularization Parameter λ 0.01 0.01 0.01 0.01

TABLE VI: Parameters of SGDm-based Algorithms for SVM

a2a w8a ijcnn1 gisette

Constant Stepsize η 0.001 0.0002 0.0001 0.0001

Regularization Parameter λ 0.01 0.01 0.01 0.01



TABLE VII: Parameters of ADAM-based Algorithms for SVM

a2a w8a ijcnn1 gisette

Constant Stepsize η 0.005 0.0005 0.0005 0.0008

Regularization Parameter λ 0.01 0.01 0.01 0.01

TABLE VIII: Parameters of SGDm-based Algorithms for Neural Networks

MLP (MINIST) LeNet (MINIST) CNN (Cifar-10)

Mini-batch Size 8 16 16

Stepsize η 0.001 0.001 0.001

Learning Rate Decay (per 100 steps) ρ 0.999 0.995 0.99

Regularization Parameter λ 0.01 0.01 0.01

TABLE IX: Parameters of ADAM-based Algorithms for Neural Networks

MLP (MINIST) LeNet (MINIST) CNN (Cifar-10)

Mini-batch Size 8 16 16

Stepsize η 0.00003 0.001 0.001

Learning Rate Decay (per 100 steps) ρ 0.999 0.995 0.99

Regularization Parameter λ 0.01 0.01 0.01


