Supplementary Materials

A. Efficient Implementation Procedures of Adaptive Sampling

Algorithm 2 Updating Tree T

Input: old tree 7, new value for i-th leaf wg
Compute A = 7} —m;
node = leaf (i)
while node.parent # NULL do
node = node + A
node = node.parent
end while
node = node + A
Output: new tree 7'
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Algorithm 3 Sampling Based on Tree T
Input: 7, R € [O LS ﬂj], C =123
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2: node = root(T)

3: while node is not a leaf do

4:  if R > node.sump + node.left.num x C then
5: R = R — node.sumy, — node.left.num x C
6: node = node.right

7:  else

8: node = node.left

9:  end if

10: end while

: Output: node.ind

B. Discussion on the Assumptions

The following proposition shows that Assumption 3 holds with high probability for large enough N.

Proposition 1. Suppose that N > 4nlogn/ 91 — @) and there are K iterations in total, then Assumption 3 holds for all K
iterations with probability at least 1 — %

Proof. Firstly, in the first N/2 iterations, for any 1 < j < n, j has been picked with probability at least
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Thus, in the first NV/2 iterates, all indices have been picked at least once with probability at least 1 — 711 Furthermore, we know
that, for iterations between ({ﬂ —1)N/2+1 and kN/2 for each 1 < [2K/N1, all indices have been picked at least once with
probability at least 1— % Once this holds, since every NN iterations must contain at least one interval [(k—1)N/2+1, kN /2]
for some 1 < [2K /N, each index has been picked at least once, i.e., Assumption 3 holds. O

C. Useful Lemmas

The stochastic gradient at certain iterate w in SGD-AIS is nipiv fi(w), where 7 follows the most recently updated distribution
p. As discussed for (6) and (7), p is a mixture of the sub-optimal distribution and the uniform distribution. To prove our desired
result, we introduce an auxiliary distribution p%, which is a mixture of the optimal distribution and the uniform distribution.
More specifically,
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Accordingly, an intermediate stochastic gradient is defined as M%V fi(w), where i ~ p™. We first prove that the variance

of this intermediate stochastic gradient Var;.pw [W%V fi(w)] is strictly smaller than the variance of uniform distribution

Var;y [V f;(w)], which is formally stated as Lemma 1.

Lemma 1. Denote U as the uniform distribution on [n], and p% is the distribution defined as (26). If Assumption 2 holds,
then for all a € [a, @], we have

Var; [V fi(w)] — Var;pw {n;wv fi(w)] > apG?. 27

Proof. Since both V f;(w) and — V fi(w) are unbiased estimator of VF'(w), we have

Variu[V fi(w)] = E[|V fi(w)|3] — [[E[V fi(w ZIIsz )3 = IVE(w)]l3,
and
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By definition of p}¥ and the fact that (az + by)(a/z + b/y) > (a + b)? for all z, y, a, b > 0, we have
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holds for any « € [, @]. Therefore,
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where the last inequality follows from Assumption 2. O

Next, we would like to bound the difference between Varwp[ -V fi(w )} and the intermediate variance

Var;pw {WV fi (w)} Lemma 2 plays a key role to achieve this.

Lemma 2. Consider the k-th iteration. Denote 7; = max{k' : k' < k,iy = j} forall j € [n]. Let oy, € (o, @) be in Algorithm
1. p is the most recently updated probability distribution in Algorithm 1, i.e.,
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py'* is defined as the right hand side of equation (26), i.e.,

Pk = ag J'vfi(wk)ng +(1- ak)l. (30)
)l n

1
) (1) (29)

> =1 IV fi(we



By (16) and Assumption 3, as well as n = max{n; : k € N} < (1 —@)§/NL, we have
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Proof. For j € [n], we first consider the difference of the following gradient norms,

IV fi(we)ll2 = IV fi(we)ll2| < IV fi(way) = V(w2
< LHWTJ — Wk||2

Znﬁ

R=Tj

vfh WH)

Pi 2

2 (32)

The fourth inequality in (32) is bacause (29) implies p;, > (1 —a)/n, and (16) implies ||V f; (w,)|l2 < G. The last inequality
in (32) is because Assumption 3 implies that k¥ + 1 — 7; < N. (32) further implies that, for all j € [n]
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where the second inequality is ensured to be positive by (16) and n < (1 — @)d/NL. (34) implies that at least one of the
following two inequalities hold, i.e.,
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It is obvious that A > B, thus inequality (35) always holds. Taking ¢ = 1,2,...,n in (35) and summing the n inequalities,
this yields
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where the second inequality comes from (16). Note that n < (1;,?6, thus the upper bound in (37) is positive. O
D. Proof of Theorem 1
Proof. We first consider the following bound
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where the last inequality follows from Lemma 2, and the final obtained bound in is positive since 7 < (17(1_5)369 < UZ@s
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where the second inequality results from Lemma 1. In addition, v = ap — L 65—12(71@6)2 N > 0 since n < u_%;ﬁ%,

and v < 1 since o, p < 1
E. Proofs of Theorems 2 & 3

Prepared with the above two lemmas, we can finally connect our desired variances Var;.p [,%p_v fi(w)} and

Var;y[V fi(w)] by bridging over the intermediate variance Var;.pw [ﬁv fi (w)}



Proof of Theorem 2. For all k € N, conditioning on wy, along with (41), we have

BrplF(wisn)] — Flw) < ~20(Flwi) = F) + (1= 562

Subtracting F'* from both sides, taking total expectation, and rearranging, this yields

E[F(wis1) — F*] < (1 - 2m0)E[F(w) — F*] + T2 (1 - )62,
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Applying this inequality repeatedly through iteration k € N to get
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Proof of Theorem 3. By (23) and the definition of 7y, the following inequality holds for all k£ € N,
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where p denotes the most recently updated sampling distribution in SGD-AIS. In (41), the first inequality is implied by the
L-smoothness of F', the second inequality follows from Theorem 1, the third inequality is due to (16), and the last inequality
are come from strong convexity of F'. Subtracting F™* from both sides, taking total expectation, and rearranging, this yields

E[F(wit1) — F*] < (1 — 2n,o)E[F(wy) — F*] + m%TL(l —7)G>.

Subtracting F'* from both sides, taking the expectation and rearranging, this yields
* n2L
E[F(Wis1) = F] < (1 - 2m0)E[F(we) = F] + 2 (1 = 9)G2. (42)

Then we prove E[F(wy) — F*] < v/(€ + k) by induction. Firstly, the definition of v ensures that it holds for & = 1. Then,
assume it holds for some k£ > 1, it follows from (42) that
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The last inequality holds because of (¢ +k — 1)(é + &k + 1) < (£ + k)? and the definition of v. O



F. Supplementary Convergence Analysis

Theorem 1 holds without requiring the convexity of the objective function F'(w), thus we can get the convergence results
of SGD-AIS for the nonconvex cases, which are formally stated as the following two theorems.

Theorem 4. Under Assumptions 1-3, suppose that the objective function F(w) is a L-smooth function, and the SGD-AIS is
run with a fixed stepsize, mi, = n for all k € N, satisfying
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Then, the average-squared gradient of F' corresponding to the iterates satisfy
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Proof. Taking the total expectation of (41) yields
2 n*L 2
E[F(Wkt1)] = E[F(wi)] < —nE[|[VE(we)[[F] + == (1 = 7)G
Summing both sides of this inequality for 1 < k < K and dividing by K gives
K
E[F(Wk+1)] — F(w1) n*L
£ < - Y E[IVF(wa) 3]+ L2176
k=1
To get (44), we only need to use the inequality E[F(wWx1)] > Fint. O

Theorem 5. Under Assumptions 1-3, suppose that the objective function F(w) is L-smooth, and SGD-AIS is run with a
diminishing stepsize sequence that satisfies, for all k € N,
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Proof. Similarly, taking the total expectation of (41) yields

E[F(wis1)] — EIF(wy)] < —mE[VF(wi) 2] + T2 (1~ )62,
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Summing both sides of this inequality for 1 < k < K and dividing by Ag gives
K
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Use the inequality E[F(Wg1)] > Fint, we can easily get the first inequality of (47), while the limitation holds because of
(46). [



G. CNN Architecture Used in the Experiments (printed in PyTorch format)

Net(

(convl): Conv2d(3, 6, kernel-size=(5, 5), stride=(1, 1))

(pool): MaxPool2d(kernel-size=2, stride=2, padding=0, dilation=1, ceil-mode=False)
(conv2): Conv2d(6, 16, kernel-size=(5, 5), stride=(1, 1))

(fc1): Linear(in-features=400, out-features=120, bias=True)

(fc2): Linear(in-features=120, out-features=84, bias=True)

(fc3): Linear(in-features=84, out-features=10, bias=True)

)

H. Dataset Sizes and Algorithmic Parameters

In our experiments, we adopt diminishing stepsizes 7, = &—ik for SGD-based algorithms and constant stepsize 7 for
SGDm/ADAM-based algorithms. The sizes of the real datasets and specific choices of the parameters are given in the following
tables.

TABLE III: Sizes of Datasets

a2a ijecnnl  w8a gisette
n 2265 49990 49749 6000
d 123 22 300 5000

TABLE IV: Parameters of SGD-based Algorithms for Logistic Regression

a2a w8a ijcnnl  gisette
Stepsize Parameter 5 1100 200 100 100
Stepsize Parameter £ 7000 100000 6000 20000
Regularization Parameter A 0.01  0.01 0.01 0.01

TABLE V: Parameters of SGD-based Algorithms for SVM

a2a w8a ijennl  gisette
Stepsize Parameter (3 300 100 1100 50
Stepsize Parameter £ 7000 100000 6000 500000
Regularization Parameter A 0.01  0.01 0.01 0.01

TABLE VI: Parameters of SGDm-based Algorithms for SVM

a2a w8a ijennl  gisette
Constant Stepsize n 0.001 0.0002 0.0001 0.0001
Regularization Parameter A 0.01 0.01 0.01 0.01




TABLE VII: Parameters of ADAM-based Algorithms for SVM

a2a w8a ijecnnl  gisette
Constant Stepsize 1 0.005 0.0005 0.0005 0.0008
Regularization Parameter A 0.01 0.01 0.01 0.01

TABLE VIII: Parameters of SGDm-based Algorithms for Neural Networks

MLP (MINIST) LeNet (MINIST) CNN (Cifar-10)

Mini-batch Size 8 16 16
Stepsize n 0.001 0.001 0.001
Learning Rate Decay (per 100 steps) p  0.999 0.995 0.99
Regularization Parameter A 0.01 0.01 0.01

TABLE IX: Parameters of ADAM-based Algorithms for Neural Networks

MLP (MINIST) LeNet (MINIST) CNN (Cifar-10)

Mini-batch Size 8 16 16
Stepsize n 0.00003 0.001 0.001
Learning Rate Decay (per 100 steps) p  0.999 0.995 0.99

Regularization Parameter A 0.01 0.01 0.01




