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1 Introduction

We consider the following general convex optimization:

min
x∈Rn

f(x)

subject to Ax ≤ b.
(1)

where G(x) = (g1(x), · · · , gm(x)), both f and gi, i ∈ [m] are smooth and convex functions, and
h(x) is a convex but nonsmooth function whose proximal mapping is easy to compute. We consider
its primal-dual formulation:

min
x

max
y≥0

L(x, y) = f(x) + h(x) +G(x)T y. (2)

Let z = (x, y) ∈ Z = Rn × Rm
+ and Z⋆ denote the set of the optimal solutions to problem (2), i.e.,

the set of solutions satisfying the KKT system. Let

X ⋆ := argmin
x

max
y≥0

L(x, y), Y⋆ := argmax
y≥0

min
x

L(x, y). (3)

Then, according to [4, Lemma 36.2], we know that a saddle point (x⋆, y⋆) ∈ Z⋆ if and only if
x⋆ ∈ X ⋆ and y⋆ ∈ Y⋆. That is, Z⋆ = X ⋆ × Y⋆.

2 Error Bound

We assume that the following error-bound condition holds:
Assumption 1. There exists some constant τ > 0 such that, for any x ∈ X and y⋆ ∈ Y⋆ with
∥(x, y⋆)∥ ≤ R, we have

τ · dist(x,X ⋆) ≤ ∥[G(x)]+∥+ ∥∇f(x) + y⋆∇G(x)T ∥2. (4)

Lemma 1. Assumption 1 holds for the case f(x) = h(Kx) + cTx where h is stronly convex and
G(x) = Ax− b.

The KKT optimality conditions is given by

prox 1
Lh

(
x− 1

L
(∇f(x) +∇G(x)T y)

)
− x = 0,

G(x) ≤ 0,

G(x)T y = 0.

(KKT)

It is straight-forward to check that the complementary slack is indeed equivalent to the following
condition:

y − [y + ηG(x)]+ = 0, for all η > 0. (5)
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Definition 1. We call the following term as the scaled KKT residual of (1) at z ∈ Z:

Fξ(z) = Fξ(x, y) =

 [G(x)]+
∇f(x) +∇G(x)T y
y − [y + 1

ξG(x)]+

 (6)

Through this paper, we assume the following error bound condition holds:
Proposition 1. There exists some constant γξ > 0 such that, for any z ∈ Z with ∥z∥ ≤ R, we have

γξ · dist(z,Z⋆) ≤ ∥Fξ(z)∥. (7)

The smoothed duality gap, proposed in [3], is defined below:
Definition 2. For any ξ > 0 and z, ż ∈ Z , we define the smoothed duality gap at z centered at ż as

Gξ(z; ż) = max
ẑ=(x̂,ŷ)∈Z

{
L(x, ŷ)− L(x̂, y)− ξ

2
∥ẑ − ż∥2

}
. (8)

3 From Error Bound to Quadratic Growth

The following simple lemma implies that we can split the (primal-dual) smoothed duality gap into
the summation of the primal and dual parts, either of which has a simplified form.
Lemma 2. For any z ∈ Z and z⋆ = (x⋆, y⋆) ∈ Z⋆, the smoothed duality gap at (x, y) can be
written as

Gξ((x, y); z
⋆) = Gξ((x, y

⋆); z⋆) +Gξ((x
⋆, y); z⋆).

Proof. The proof follows from the definition of the smoothed duality gap.

Gξ((x, y); z
⋆) = max

x̂,ŷ≥0

{
L(x, ŷ)− L(x̂, y)− ξ

2
∥x̂− x⋆∥2 − ξ

2
∥ŷ − y⋆∥2

}
= max

x̂,ŷ≥0

{
L(x, ŷ)− L(x⋆, y⋆) + L(x⋆, y⋆)− L(x̂, y)− ξ

2
∥x̂− x⋆∥2 − ξ

2
∥ŷ − y⋆∥2

}
= max

ŷ≥0

{
L(x, ŷ)− L(x⋆, y⋆)− ξ

2
∥ŷ − y⋆∥2

}
+max

x̂

{
L(x⋆, y⋆)− L(x̂, y)− ξ

2
∥x̂− x⋆∥2

}
(9)

According to the optimality condition of (x⋆, y⋆), we have

L(x⋆, y⋆) = min
x̃

L(x̃, y⋆) = min
x̃

{
L(x̃, y⋆) + ξ

2
∥x̃− x⋆∥2

}
,

which impies that

max
ŷ≥0

{
L(x, ŷ)− L(x⋆, y⋆)− ξ

2
∥ŷ − y⋆∥2

}
= max

x̃,ŷ≥0

{
L(x, ŷ)− L(x̃, y⋆)− ξ

2
∥x̃− x⋆∥2 − ξ

2
∥ŷ − y⋆∥2

}
=Gξ((x, y

⋆); z⋆).

(10)

Simlarly, we could show that

max
x̂

{
L(x⋆, y⋆)− L(x̂, y)− ξ

2
∥x̂− x⋆∥2

}
= Gξ((x

⋆, y); z⋆). (11)

So we complete the proof.

Theorem 1. For any ξ > 0, the smoothed duality gap of (2) satisfies quadratic growth on Z . Namely,
it holds for any z ∈ Z with ∥z∥ ≤ R that

Gξ(z; z
⋆) ≥ αξ · dist2(z,Z⋆),

where αξ = γ2
ξ ·min

{
ξ
4 ,

1
4ξ ,

1
2L(1+

√
mR)

}
.
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Lemma 3. For any z ∈ Z and z⋆ = (x⋆, y⋆) ∈ Z⋆, the smoothed duality gap at (x, y⋆) equals to

Gξ((x, y
⋆); z⋆) ≥ γ2

ξ ·min

{
ξ

4
,
1

4ξ
,

1

2L(1 + ∥y⋆∥1)

}
· dist(x,X ⋆)2.

Proof. According to (10), we have

Gξ((x, y
⋆); z⋆) = max

ŷ≥0

{
L(x, ŷ)− L(x⋆, y⋆)− ξ

2
∥ŷ − y⋆∥2

}
= max

ŷ≥0

{
f(x) + h(x) +G(x)T ŷ − ξ

2
∥ŷ − y⋆∥2

}
− L(x⋆, y⋆)

= max
ŷ≥0

{
−ξ

2

∥∥∥∥ŷ − y⋆ − 1

ξ
G(x)

∥∥∥∥2
}

+
ξ

2

∥∥∥∥1ξG(x)

∥∥∥∥2 + f(x) + h(x) +G(x)T y⋆ − L(x⋆, y⋆)

=
ξ

2

∥∥∥∥1ξG(x)

∥∥∥∥2 −
∥∥∥∥∥
[
y⋆ +

1

ξ
G(x)

]
−

∥∥∥∥∥
2
+ L(x, y⋆)− L(x⋆, y⋆)

(12)

where the last equality holds because the optimal ŷ =
[
y⋆ + 1

ξG(x)
]
+

. On the one hand, the fact

that y⋆ ≥ 0 implies that
[
y⋆ + 1

ξG(x)
]
−
≤
[
1
ξG(x)

]
−

, so we have

∥∥∥∥1ξG(x)

∥∥∥∥2 −
∥∥∥∥∥
[
y⋆ +

1

ξ
G(x)

]
−

∥∥∥∥∥
2

≥
∥∥∥∥1ξG(x)

∥∥∥∥2 −
∥∥∥∥∥
[
1

ξ
G(x)

]
−

∥∥∥∥∥
2

=

∥∥∥∥∥
[
1

ξ
G(x)

]
+

∥∥∥∥∥
2

.

On the other hand, it is easy to check that∥∥∥∥1ξG(x)

∥∥∥∥2 −
∥∥∥∥∥
[
y⋆ +

1

ξ
G(x)

]
−

∥∥∥∥∥
2

=

∥∥∥∥∥1ξG(x) +

[
y⋆ +

1

ξ
G(x)

]
−

∥∥∥∥∥
2

− 2

(
1

ξ
G(x) +

[
y⋆ +

1

ξ
G(x)

]
−

)T [
y⋆ +

1

ξ
G(x)

]
−

=

∥∥∥∥∥
[
y⋆ +

1

ξ
G(x)

]
+

− y⋆

∥∥∥∥∥
2

− 2

([
y⋆ +

1

ξ
G(x)

]
+

− y⋆

)T [
y⋆ +

1

ξ
G(x)

]
−

=

∥∥∥∥∥
[
y⋆ +

1

ξ
G(x)

]
+

− y⋆

∥∥∥∥∥
2

+ 2y⋆T
[
y⋆ +

1

ξ
G(x)

]
−

≥

∥∥∥∥∥
[
y⋆ +

1

ξ
G(x)

]
+

− y⋆

∥∥∥∥∥
2

(13)

where the second equality holds because of the fact

1

ξ
G(x) +

[
y⋆ +

1

ξ
G(x)

]
−
=

(
y⋆ +

1

ξ
G(x)

)
+

[
y⋆ +

1

ξ
G(x)

]
−
− y⋆ =

[
y⋆ +

1

ξ
G(x)

]
+

− y⋆,

the third equality holds because the product of the positive part and negative part should be 0, and the
last ineqality holds because y⋆ ≥ 0 and

[
y⋆ + 1

ξG(x)
]
−
≥ 0. Next, note that the function L(x, y⋆)

is convex w.r.t. x and x⋆ is one of the global optimal solutions, and the L-smoothness of both f and
G implies that L(x, y⋆) is L(1 + ∥y⋆∥1)-smooth. So we have

L(x, y⋆)− L(x⋆, y⋆) ≥ L

2

∥∥∥∥prox 1
Lh

(
x− 1

L
(∇f(x) +∇G(x)T y⋆)

)
− x

∥∥∥∥2
3



Therefore, we have

Gξ((x, y
⋆); z⋆) ≥ξ

4

∥∥∥∥∥
[
y⋆ +

1

ξ
G(x)

]
+

− y⋆

∥∥∥∥∥
2

+
1

4ξ
∥[G(x)]+∥2 +

1

2L(1 + ∥y⋆∥1)
∥∇f(x) +∇G(x)T y⋆∥2

≥min

{
ξ

4
,
1

4ξ
,

1

2L(1 + ∥y⋆∥1)

}
∥Fξ(x, y

⋆)∥2

≥γ2
ξ ·min

{
ξ

4
,
1

4ξ
,

1

2L(1 + ∥y⋆∥1)

}
· dist(x,X ⋆)2.

(14)

where the last inequality holds by applying Proposition 1 to z = (x, y⋆).

Lemma 4. For any z ∈ Z and z⋆ = (x⋆, y⋆) ∈ Z⋆, the smoothed duality gap at (x⋆, y) is equal to

Gξ((x
⋆, y); z⋆) ≥ γ2

ξ ·min

{
1

ξ
,

1

2L(1 + ∥y∥1)

}
· dist(y,Y⋆)2.

Proof. According to (11), we have

Gξ((x
⋆, y); z⋆) = max

x̂

{
L(x⋆, y⋆)− L(x̂, y)− ξ

2
∥x̂− x⋆∥2

}
= f(x⋆) + h(x⋆)−min

x̂

{
f(x̂) + h(x̂) +G(x̂)T y +

ξ

2
∥x̂− x⋆∥2

} (15)

The L-smoothness of both f and G implies that

f(x̂)+h(x̂)+G(x̂)T y ≤ f(x⋆)+G(x⋆)T y+
(
∇f(x⋆) +∇G(x⋆)T y

)T
(x̂−x⋆)+

L(1 + ∥y∥1)
2

∥x̂−x⋆∥2+h(x̂)

Assume y is bounded and M = L(1 + ∥y∥1) + ξ, we have

Gξ((x
⋆, y); z⋆) ≥ f(x⋆) + h(x⋆)−min

x̂

{
f(x⋆) +G(x⋆)T y +

(
∇f(x⋆) +∇G(x⋆)T y

)T
(x̂− x⋆) +

M

2
∥x̂− x⋆∥2 + h(x̂)

}
=

M

2

∥∥∥∥prox 1
M h

(
x⋆ − 1

M
(∇f(x⋆) +∇G(x⋆)T y)

)
− x

∥∥∥∥2 −G(x⋆)T y.

(16)

We complete the proof by

−G(x⋆)T y ≥ 1

ξ

∥∥∥∥∥y −
[
y +

1

ξ
G(x⋆)

]
+

∥∥∥∥∥
2

which can be checked by entrywise discuss whether yi + 1
ξGi(x

⋆) ≥ 0 or not.

4 Application: Fisher Equilibrium Problem

In Fisher’s market model, the players are divided into two sets: producers and consumers. Consumer
i, i ∈ C has given money endowment wi to spend and buys goods to maximize their individual utility
functions; producer j, j ∈ P , sells its good for money. The price equilibrium is an assignment of
prices to goods so that when every consumer buys a maximal bundle of goods then the market clears,
meaning that all the money is spent and all the goods are sold. A convex optimization formulation is
considered in the literature:

max
x

∑
i∈C

wi log

∑
j∈P

uijxij


s.t.

∑
i∈C

xij = pj , ∀j ∈ P

xij ≥ 0, ∀i, j

(17)
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where pj > 0 denotes the unit of producer j’s good, uij ≥ 0 is the given utility coefficient of player i
for producer j’s good, and the varible xij represents the amount of good bought from producer j by
comsumer i.

Existing results in literature:

• Sublinear convergence rate (1/k) is guaranteed both exact PDHG [1] and linear approxima-
tion PDHG [2].

• According to [3], exact PDHG has linear convergence rate if the smoothed quadratic growth
property holds.

•
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