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1 Introduction

We consider the following general convex optimization:

min  f(z)
rER® (1)
subjectto Az < b.

where G(z) = (g1(2),- -+, gm(x)), both f and g;,i € [m] are smooth and convex functions, and
h(x) is a convex but nonsmooth function whose proximal mapping is easy to compute. We consider
its primal-dual formulation:

minmax £(x,y) = f() + h(z) + G(x)"y. )

Let z = (z,y) € Z =R" x R’ and Z* denote the set of the optimal solutions to problem @), ie.,
the set of solutions satisfying the KKT system. Let

X* == arg minmax L(x, y), Y* = argmaxmin L(x, y). 3)
z  y>0 y>0 =z

Then, according to [4, Lemma 36.2], we know that a saddle point (z*,y*) € Z* if and only if
r* € X*and y* € Y*. Thatis, Z* = X* x V*.

2 Error Bound

We assume that the following error-bound condition holds:

Assumption 1. There exists some constant T > 0 such that, for any x € X and y* € Y* with
[I(z, )|l < R, we have

7 dist(z, X*) < [[[G@)]+ | + [IVf(2) +y*VG(2)" 2. Q)

Lemma 1. Assumption holds for the case f(x) = h(Kxz) + ¢« where h is stronly convex and
G(z) = Az —b.

The KKT optimality conditions is given by

prox. (:c _ %(v @) + VG(x)Ty)) p—
G(z) <0,
G(z)Ty =0.

It is straight-forward to check that the complementary slack is indeed equivalent to the following
condition:

(KKT)

y — [y +nG(x)]+ =0, forall n > 0. o)
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Definition 1. We call the following term as the scaled KKT residual of () at z € Z:

[G(x)]+
Fe(z) = Fe(z,y) = | V(@) + VG(2)Ty ©6)
y—ly+ ¢G@)]+

Through this paper, we assume the following error bound condition holds:
Proposition 1. There exists some constant ¢ > 0 such that, for any z € Z with ||z|| < R, we have

Ve - dist(z, 27) < || Fe(2)]]. 7

The smoothed duality gap, proposed in [3]], is defined below:
Definition 2. Forany { > 0 and z, 2 € Z, we define the smoothed duality gap at z centered at z as

Gelai9) = _max {Le.d) ~ o) - Sl - 312). ®

5=(2,9)€2

3 From Error Bound to Quadratic Growth

The following simple lemma implies that we can split the (primal-dual) smoothed duality gap into
the summation of the primal and dual parts, either of which has a simplified form.

Lemma 2. For any z € Z and z* = (z*,y*) € Z*, the smoothed duality gap at (x,y) can be
written as

Ge((w,y);27) = Ge((w,y7); 2%) + Ge((¢7, ); 7).
Proof. The proof follows from the definition of the smoothed duality gap.

Gel(o.9)i2") = g { £0.9) = £(a) = =" = §1 57

,5>0 2

= max {£(0.) — £ ) + £ 97) = £G0) - Sl -1 = Sl - 071

z,5>0
- maX{ﬁ(x,ﬂ) L) - €||g—y*2} +ma><{ﬁ(x*7y*) Ly - £||fc—oc*|2}
>0 2 & 2
C)

According to the optimality condition of (z*, y*), we have
£l y") = min @) = min { £a) + 5 - 12
which impies that

wax{ £0,) — £ ) = §l -1

520

. ~ ~ * g ~ %12 5 ~ * 12 (10)
m { £(2.9) = £Gay) = Sl = a2 = Sl -]
=Ge((z,y7); ).
Simlarly, we could show that
max {[,(x*, y*) — L(2,y) — g”:ﬁ - x*||2} = Ge((z™,y); 2%). (11)
So we complete the proof. O

Theorem 1. For any £ > 0, the smoothed duality gap of @) satisfies quadratic growth on Z. Namely,
it holds for any z € Z with ||z|| < R that

Ge(z;2%) > g - dist(z, 2*),

— 2. mind & 1 1
where oie = ¢ .mln{Z,E, 2L(1+\/HR)}'
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Proof. According to (T0), we have
* * ~ * * 5 ~ *
Ge((z,y"); 2 )—maX{ﬁ(Ly)—E(x ) = Zlg =yl
§>0 2

— ma { 1(0) + 1(e) + G5 - Sl -1} - £t )

%%{ggy*gnm }+§HQ%@ + @)+ h) + Gy — L6 y)
RAE 2_*}I2 o) — Ll
~5 (] o [y+60<4j‘ b L) - L)

(12)

where the last equality holds because the optimal § = {y* + %G (x)} . On the one hand, the fact
Jr

that y* > 0 implies that [y* + %G(x) < [%G(w)} , so we have

gl el [ -

ot

On the other hand, it is easy to check that

o

)

2

toa [+ ]
- %G(x) + [y + éG(x)} . Hz -2 (ia(x) + [y + éG(w)} _)T [y + éG(x)} )
flrieo | a(eio] o) egee]. e

_ 2

= _y* + 1G(:r) —y* +2y*" [y* + 1G(SC)}
i § 1y £

2

) , )
>\ |y + G@)| —y*
i £ N

where the second equality holds because of the fact

2600+ |1+ 56| = (v + g6 + |y + g6~y = |y g6w)] v

the third equality holds because the product of the positive part and negative part should be 0, and the
last ineqality holds because y* > 0 and [y* + %G (x)] > 0. Next, note that the function L(z, y*)

is convex w.r.t.  and x* is one of the global optimal solutions, and the L-smoothness of both f and
G implies that L(x, y*) is L(1 + ||y*||1)-smooth. So we have

I 2
:

L(z,y*) = L(2z7,y") =

proxy (o= (V1) + V6@ - o




Therefore, we have

2
£ [ 1 } 1 2 1 T, * (|2
Ge((z,y*);2%) >=> |||y + =G(z)| —y*|| + =[Gz +————||Vf(z) + VG(z) y*
(st 25 ||y + 56| N C@LIP + spg e 1976 + V6@ |
. 5 1 1 } *\ |2
Zmln AT T (1 1 axll F, z,y
Ve mmme e Ve
1 1
> 2-min{£77}-dist x, X*)2
S PP 7een ) A
(14)
where the last inequality holds by applying Proposition|l|to z = (z, y*). O

Lemma 4. Forany z € Z and z* = (x*,y*) € Z*, the smoothed duality gap at (x*,y) is equal to

1 1
Gel(a"5=") 2 o min{ g g f )

Proof. According to (TT)), we have

Gel(w,0)i*) = max { £(a* ") = Lla.9) = e - o* )

15)
= )+ h(a) - min { £8) 4 1(0) + G@) Ty + Sl - o7
The L-smoothness of both f and G implies that
F@)+h(@) Gy < f )+ Gy (V) + VG y) ety X o

2
Assume y is bounded and M = L(1 + ||y||1) + &, we have

Ge((27,y); 2") = f(a7) + h(2") — min {f(w*) + Gy + (V") + VG )Ty) " (- 2%) + %Hi —a*|* + h(2)

2

M 1
=5 ‘ Prox i p, (x* - M(Vf(x*) + VG(x*)Ty)> —z|| —G@")Ty.
(16)
We complete the proof by
2
*\T 1 1 *
~G@*)'y > 2|y — |y + G(z%)
3 ¢ .

which can be checked by entrywise discuss whether y; + %Gi(az*) > 0 or not. O

4 Application: Fisher Equilibrium Problem

In Fisher’s market model, the players are divided into two sets: producers and consumers. Consumer
1,4 € C has given money endowment w; to spend and buys goods to maximize their individual utility
functions; producer j, 7 € P, sells its good for money. The price equilibrium is an assignment of
prices to goods so that when every consumer buys a maximal bundle of goods then the market clears,
meaning that all the money is spent and all the goods are sold. A convex optimization formulation is
considered in the literature:

max E w; log E Ui Tij
x

ieC jeEP
a7
S.t. Z:ZJ” =Dy, VjeP
i€C



where p; > 0 denotes the unit of producer j’s good, u;; > 0 is the given utility coefficient of player ¢
for producer j’s good, and the varible z;; represents the amount of good bought from producer j by
comsumer ¢.

Existing results in literature:

* Sublinear convergence rate (1/k) is guaranteed both exact PDHG []] and linear approxima-
tion PDHG [2].

* According to [3], exact PDHG has linear convergence rate if the smoothed quadratic growth
property holds.
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