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ABSTRACT

Coupled structured matrix factorization (CoSMF) for hyperspectral
super-resolution (HSR) has recently drawn significant interest in hy-
perspectral imaging for remote sensing. Presently there are very few
studies on the theoretical recovery guarantees of CoSMF. This pa-
per makes one such endeavor by considering the CoSMF formula-
tion by Wei et al., which, simply speaking, is similar to coupled
non-negative matrix factorization. Assuming no noise, we show suf-
ficient conditions under which the globably optimal solution to the
CoSMF problem is guaranteed to deliver certain recovery accura-
cies. Our analysis suggests that sparsity and the pure-pixel (or sepa-
rability) condition play a hidden role in enabling CoSMF to achieve
some good recovery characteristics.

Index Terms— hyperspectral super-resolution, coupled struc-
tured matrix factorization, recovery guarantee

1. INTRODUCTION

Recently, in remote sensing, there has been a flurry of research in
hyperspectral super-resolution (HSR). The problem is to construct
a super-resolution (SR) image—which possesses both high spectral
and spatial resolutions—from a co-registered pair of multispectral
(MS) and hyperspectral (HS) images [1]. The MS and HS images
have limited spectral and spatial resolutions, respectively, owing to
hardware constraints, and the possibility of fusing the two to achieve
super-resolution imaging is a very attractive idea. HSR was empir-
ically demonstrated to be possible in the pioneering research [2, 3].
There, the approach is to formulate the problem as a coupled struc-
tured matrix factorization (CoSMF) problem. For example, Yokoya
et al. apply non-negative matrix factorization (NMF) in their famous
coupled NMF (CNMF) algorithm [2]. Naturally one can also con-
sider other structured matrix factorization (SMF) formulations, such
as those involving sparsity, spatial smoothness, etc. In fact, the ma-
jority of the current HSR research are focused on various CoSMF
formulations and the subsequent algorithm designs.

Given the rapid development of HSR, and the empirical suc-
cesses reported therein, there is a strong motivation to understand
whether CoSMF truly works—in theory. Specifically the question is
about what are the conditions, both on the MS-HS sensor specifica-
tions and on the scene, such that COSMF is provably guaranteed to
yield certain recovery accuracies with the SR image. Presently we
see very few research on such theoretical direction, in stark contrast
to the numerous research on algorithm designs. The only available
work is our previous paper [4], which studies recovery guarantees
under a decoupled SMF pathway.
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In this paper we consider a CoSMF formulation similar to
CNMEF, namely, the one by Wei et al. [5], in which the linear spec-
tral mixture model structure is exploited. The main contribution
of this paper is to analyze the recovery accuracy of this CoSMF.
Assuming the noiseless case, we identify sufficient conditions under
which the recovery error of any globally optimal solution to the
CoSMF problem can be bounded. From there, we reveal insights
on when CoSMF is theoretically guaranteed to perform well. Ow-
ing to space limitation, we are unable to include all the proofs in
this paper. The complete proofs can be found in the extended, and
online-accessible, version of this paper [6].

Some notations in this paper are defined as follows. Given a
matrix X € R™ ", &' € R™ and ; € R™ represent the ith
row and jth column of X, respectively; X7 is a submatrix of X
obtained by keeping the rows of X indicated by Z; similarly, X s
is a submatrix obtained by keeping the columns indicated by 7, and
XZ the rows indicated by Z and columns indicated by J; |||
denotes the number of nonzero elements of ¢; X > 0and X < 1
mean that z;; > 0 and x;; < 1 for all ¢, 5, respectively.

2. MODEL

The signal model of the HSR problem is described as follows. Let
X € RM*ZE be the spectral-spatial matrix of the SR image we desire
to obtain. Here M denotes the number of spectral bands, and L
the number of pixels. The column &; of X describes the spectral
pixel at a specific spatial position indexed by ¢. The SR image is
incompletely observed by an MS sensor and an HS sensor. Fig. 1
depicts how the relationship between the SR image and its MS-HS
observations is modeled. For the MS image, one MS spectral band
is modeled as a linear combination of a number of contiguous SR
spectral bands. Specifically, the spectral pixels observed by the MS
sensor are expressed as

oL, €y

where F € RMM*M describes the spectral decimation response;
My < M is the number of MS spectral bands. Note that we assume
no noise. For the HS image, the HS pixels of each spectral band are
modeled as a spatially blurred and down-sampled version of the SR
counterpart. Correspondingly, the spectral pixels observed by the
HS sensor are given by

yM,i:F.’i’i, 1=1,...

YH,i = Z @]’gji:)zgigi, i=1,... 2)

JEL;

7LH7

where £; C {1,..., L} indicates a neighborhood of SR spectral
pixels that have correspondence with the HS spectral pixel at posi-
tion 7; g;j; describes the spatial decimation response; Ly < L is the
number of HS pixels; g; € Rl is a vector obtained by concate-
nating the coefficients {g;; }jec,. The spatial decimation response
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Fig. 1. Ilustration of the observation model.

vector g; satisfies
17g;=1; 3)

gi >0,

see, e.g., [2]. Also we assume UiL:HILi ={1,..., L}, and that one
L; can have overlap with another.

The SR image is assumed to obey the linear spectral mixture
model [7], wherein every spectral pixel is posited as a linear combi-
nation of a number of distinct materials, or endmembers; that is,

&= >, s = A5y, 4

where each ay is the spectral signature of an endmember; 5,; > 0
describes the contribution, or abundance, of endmember £ in pixel ¢;
A = [a@i,...,an ]; 8 = [S1,i,.--, 8N, ]T; N is the number of
endmembers. The abundance vectors §;’s are typically assumed to
lie in the unit simplex; i.e.,

sieuU ={secRV|s>0,1"s=1}.

The model order N is much smaller than M and L, but it can be
greater than My;. The endmember matrix A is non-negative by na-
ture. We may also assume a;; < 1; this is because the MS-HS
measurements are in the form of reflectance, with the range usually
given by [0, 1].

For conciseness, we rewrite the model (1)-(4) as

Yu=FX, Yu=XG, X=AS, 3)

\yhere Y is a matrix obtained by concatenating the yn,;’s; Yu and
S are obtained by the same fashion; G € R**LH has its (j,4)th
element given by g;; if j € £;, andby 0if j ¢ L;. Also we denote

UMt =g e RV | s, etV i=1,...,L}.

Recall A € [0, 1]M*N, § c yN*E.

3. PROBLEM STATEMENT

The HSR problem is to recover the SR image X from the MS-HS
image pair (Yu, Yi). Under the above introduced model, it is natu-
ral to consider the following CoSMF formulation

. 2 2

an I'YM — FAS|% + ||Yu — ASG||F, (6)

where F' and G are assumed to be known, which is done via cali-
bration or estimation [2, 8];

A:[0’1]AIXN7 SZZ/INXL. (7)

This CoSMF formulation was introduced in [5]. It was inspired by
the CNMF formulation [2] which replaces (7) by A > 0,5 > 0.
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From the appearance of problem (6), one may have the impres-
sion that the aim is to identify A and S, the true endmember and
abundance matrices. This is not entirely true. We are concerned
with whether the solution (A, S) leads to a reconstructed SR image
X = AS that is the same as, or close to, the true one X.

Our interest in this paper is to show sufficient conditions under
which the CoSMF problem (6)—(7) promises some kind of recov-
ery guarantees with the true SR image. Before we do so, we give
the reader a glimpse of how CoSMF performs empirically. Fig. 2
displays the average mean-squared error (MSE) of CoSMF in a
semi-real data experiment. Here, X is a real image, taken from the
AVIRIS Indian Pine dataset [9]; Ya and Yu are synthetically gen-
erated by (5), with noise added; F' corresponds to the Landsat 4 TM
MS sensor specification [10]; G corresponds to 11 x 11 Gaussian
spreading (with variance 1.72) and down-sampling of 4; we have
(M, My, L, Lu, N) = (178,6,1202,30% 30); 100 independent
trials were tested; the algorithm in [11] is used to handle the CoOSMF
problem (6). We see that the CoSMF provides reasonably good
MSE performance under higher SNRs.
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Fig. 2. MSE performance in a semi-real data experiment.

4. THE MAIN RESULT

We first shed light onto the problem natures and put down assump-
tions along the way. Consider an alternative representation of the
model (5):

Yu=A’'S, (8a)
Yy = AS/, (8b)
where
A =FAecR"™WN & _ §geRV*In
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denote the spectrally-decimated true endmember matrix and the
spatially-decimated true abundance matrix, respectively. Particu-
larly, S’ can be interpreted as the abundance matrix of the HS image
Yy. It can be shown that S’ lies in U™ 51 (use 5, = S¢,gi, (3)

and Sz, € UM I€il), We make the following assumption.

Assumption 1 The true endmember matrix A has full column rank.
The spatially-decimated true abundance matrix S’ has full row rank.

Assumption 1 is considered reasonable. Physically it means that
both the spectral signatures and HS abundance distributions (ay’s
and [S"]k’s, respectively) of the various materials are distinctively
different. In fact, Assumption 1 is standard in the context of HS
unmixing [12]. Similarly we also want to assume that the spectrally-
decimated signatures aj,’s of the various materials yield certain dis-
tinctiveness. An easy way is to assume full column-rank A’, but this
is generally not satisfied because A’ can be fat: The number of MS
spectral bands M is about 4 to 8 in the existing MS sensors, while
the model order N can easily be greater than M. For this reason
we consider

K = krank(A"), 9)

where krank denotes the Kruskal rank, and we use K to quantify
the distinctiveness of A’. Recall from the Kruskal rank definition
that any collection of K vectors in {@}, ..., @} is linearly inde-
pendent. Note K < min{N, Mwm }.

The abundances encountered in real life are usually sparse.
More precisely, an MS or HS pixel may be posited as a combination
of a few materials. Such sparse assumption has been used, argued
to be reasonable, in sparse HS unmixing [13]. This leads us to the
following assumption.

Assumption 2 Every column 3, of the spatially-decimated true
abundance matrix S’ is K-sparse, i.e., ||8;||o0 < K, where K is
defined in (9).

Roughly speaking, Assumption 2 requires the number of active
abundances at each HS pixel to be no greater than the degrees of
distinctiveness of A’. Tt should be noted that

supp(5;) C supp(5;), forall j € L. (10)

Here, the notation supp is defined as supp(x) = {i | ©; # 0}.
Eq. (10) can be easily verified from 5} = S'Ligi, g; > 0and S'Li >
0. There is an interesting consequence with Assumption 2. Without
Assumption 2, the linear system solution to (8a) with respect to .S is
non-unique when A’ is fat. With Assumption 2, we can express as
(8a)

yu,; = A5, jEL, 11)

and for all i = 1,..., Ly, where J; = supp(8;). Since |J;| =
I8i]lo < K, the matrix Afz, has full column rank. Hence, the linear
system solution to (11) with respect to sfi is unique—assuming that
we know the sparsity pattern indicated by J;. The above observa-
tion, first made in [4], will be key in our CoOSMF recovery analysis.

In addition to sparsity, we also adopt the widely-used pure-pixel
assumption in HS unmixing [12] (also known as the separability as-
sumption in machine learning [14]).

Assumption 3 There exists an index set K such that the spatially-
decimated true abundance matrix S’ satisfies Sic = I.
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The above pure-pixel assumption means that there exist HS pixels
that contain purely one material; this can be seen from [Yu|x =
ASj. = A. The pure-pixel assumption is reasonable if the HS
spatial resolution relative to the scene is not too coarse such that
pure (or near-pure) pixels of each material appear at least once in the
scene.

We need one more assumption to pin down the recovery condi-
tion of CoSMF. Define

. 1-— Qg s < 1
€= min < ——— | Qg < —
T 1<k<m | 1 — Nawg TN
€ = max €ji-.
1<7,i<N,ij

Note that the above definition implicitly assumes ax; < 1/N for
some k, and that ¢ > 0.

Assumption 4 It holds that mini<k<nr ax; < 1/N for all i, and
that e < 1/(4N).

A simple way to interpret Assumption 4 is as follows. We can find
an HS spectral band, indexed by k, such that the spectral component
of one material, ax;, is much stronger than that of another, ax;. This
dominant condition is more significant if € is smaller. Assumption
4 may look strong, but it is necessary for CoSMF to guarantee good
provable recovery results; this will be discussed later. Moreover, we
can justify by considering the following result.

Lemma 1 If the elements a;; of the true endmember matrix A are
independent and follow the [0, 1]-uniform distribution, Assumption

4 holds with probability at least 1 — N(N — 1) exp(— zaz)-

The proof of Lemma 1 is shown in the extended version of this paper
[6].

We now present the main result.

Theorem 1 Suppose Assumptions 1-4 hold. Also, suppose N > 2.
Then, any solution (A, S) to the CoSMF problem (6) satisfies

A8, — As;|ls < € - omax (A)V/1+ 12 <4 + 73) C
J

where
Umax A,
v JCHIaXN} ( '{EE;J\;}\j) 7 (12)
fg‘jﬂéN i Omin J
_ [ NJ/2, K > N/2
C_{ JEN-K), K<N/2 (13)
Vs =max{g_7~i ‘ i=1,...,Lu, L; 9]} (14)

We will prove Theorem 1 in the next section. Theorem 1 is not an ex-
act recovery result. In fact, we will show in Section 6 that a counter
example for exact recovery exists. Theorem 1 shows, for the first
time, that CoSMF is theoretically guaranteed to yield certain recov-
ery accuracies. It also suggests how the recovery error may scale
with the problem parameters. The most notable one is e. If the spec-
tral dominant condition with the true endmembers in Assumption 4
is strong such that € is small, the recovery error will be small. An-
other parameter is x, which looks similar to the condition number
(i.e., Omax(A)/0omin(A)) in the study of linear system sensitivity.
We expect « to be small if the spectrally-decimated endmember ma-
trix A’ exhibits good distinctiveness.
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An interesting aspect we should highlight is that the CoSMF
problem (6) does not exploit the sparsity and pure-pixel problem
structures. It is a plain matrix factorization, utilizing only the [0, 1]
and unit-simplex properties of the endmembers and abundances, re-
spectively. Yet, the sparsity and pure-pixel conditions play a hidden
role in endowing CoSMF with some recovery characteristics. Those
characteristics will be revealed in the proof of Theorem 1 in the next
section.

It should also be mentioned that Theorem 1 shows a recovery
error bound that is applicable to any globally optimal solution to
the CoSMF problem (6). In practice, if we initialize the algorithm
well such that the algorithm stands a good chance to converge to a
solution close to the ground-truth (A, S) (or (ATI, TI7 S) for any
permutation matrix IT), we should expect that the recovery error be
smaller than the theory predicts.

5. PROOF OF THEOREM 1

Since we assume no noise, the CoSMF problem (6) is the same as

findAc A, SeS (15a)
s.t. Yy = AS’, (15b)
Yu=A'S, (15¢)

where A’ = FA,S" = SG. Let us simply denote (A, S) as an
arbitrary solution to problem (15). From (8b) and (15b) we have

AS = AS'.

Since we assume that A and S’ have full column and row rank, re-
spectively (Assumption 1), by basic matrix analysis results we know
that (A, S’) must satisfy

A=AR', S =RS, (16)

for some nonsingular R. This leads to
|As; — Asjll2 = || A5; — AR 'sj]2
< omax(A)|15; — R ;2 a7

The next problem is to show a bound on ||5; — R™*s;]2.

Proposition 1 Let II € RV XY be g permutation matrix. Let R=
IIR, and let p = max;x; |7i;|. Suppose N > 2 and
Omin(RT) > 0. (18)

B = min
IC{1,...,N},
N-K<|Z|<N-1

Under Assumption 2, it holds that

_ C 1 1
I8, — RVslls < 1+n2”—(—+;), (19)
J

/3 Omin (R)
where k, C and y; are defined in (12), (13), and (14), respectively.

The proof of Proposition 1 is shown in_the extended version of this
paper [6]. Proposition 1 reveals that if R, a row-wise permutation of
R, is close to a diagonal matrix, the error ||5; — R~ 's;||2 will be
small.

_ We therefore study the structures of R, seeing if a near-diagonal
R can be found. Here is the first result.
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Fact 1 Under Assumption 3 we have R € UN YN, or equivalently,

0<ry; <1, ri=1-=30 "k,

forallti,j.

The proof of Fact 1 is simple: From (16) we have Sy. = RSx = R.
Since 8’ € U™ ** (which follows the same argument as S € YUY >~
in the preceding section), we obtain R € U~ ", With Fact 1, we
further show the following result.

Proposition 2 Under Assumption 4 and the result in Fact 1, there
exists a permutation matrix I1 such that R = I1R satisfies 7i; < €
for all i # j. Here, the requirement with € in Assumption 4 can be
relaxed as e < 1/N.

The proof of Proposition 2 is shown in the extended version of this
paper [6]. By applying Propositions 1 and 2 to (17), the proof of
Theorem 1 is almost complete. The remaining problem is to bound
omin (R) and §in (19). We use the following result which is the con-
sequence of a singular value bound for strictly diagonally dominant
matrices [15].

Fact 2 Suppose R = TIR, where I is a permutation matrix and
R lies in UN*N, satisfies 7i; < 1/(4N) for all i # j. Then, it is
true that omin(RZ) > 1/2 for any non-empty T C {1,...,N}.

We show Fact 2 in the extended version of this paper [6]. Applying
the above result completes the proof of Theorem 1.

6. IS EXACT RECOVERY POSSIBLE?

One may wonder if CoSMF can guarantee exact recovery under our
assumptions. We argue that this is impossible in general. Consider
the following counter example: M = 3, My =1, N =3, L =6,

Jt-p p 0] [t 100 00
A=| p 1-p 0|, §=]0 0 1 1 0 of,
0 0 1 0000 11

F = [1,1,1], ,C1 = {1,2},,62 = {3,4},,63 = {5,6}, g1 =
g2 = gz = [0.5,0.5]T, 0 < p < 0.5. This instance satisfies
Assumptions 1-3, with K = 1. It can be verified that A = I,

l—p+a1r 1—p—a p+az p— a2 0
S = p—aq p+ o l—-p—a2 1—p+az O
0 0 0 0 1

is a feasible solution to problem (15) forany —p < a; < p,71 =1,2;
we omit the verification details owing to space limitation. We see
that

| A5 — Asil2 = V2|aa| < V2p. (20)
Also, the above error bound is achievable (choose oy = p). This
demonstrates that exact recovery is impossible except for the special
case of p = 0. This counter example also helps explain why As-
sumption 4 is necessary. The error bound (20) can only be reduced
by decreasing p. On the other hand, the requirement of small € in
Assumption 4 is the same as forcing p to be small.

7. CONCLUSION

We proved the sufficient recovery guarantees of a CoOSMF problem
for HSR. Our analysis revealed that the abundance sparsity, the exis-
tence of pure pixels, and some spectral endmember dominant prop-
erty provide the sufficient conditions for CoSMF to yield good re-
covery guarantees.

Authorized licensed use limited to: Imperial College London. Downloaded on December 17,2020 at 13:55:29 UTC from IEEE Xplore. Restrictions apply.



(1]

(2]

(3]

[6]

[7]

[10]

(11]

(12]

[13]

[14]

8. REFERENCES

L. Loncan, L. B. De Almeida, J. M. Bioucas-Dias, X. Briottet,
J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi,
M. Simoes et al., “Hyperspectral pansharpening: A review,’
IEEE Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 2746,
2015.

N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative
matrix factorization unmixing for hyperspectral and multispec-
tral data fusion,” IEEE Trans. Geosci. Remote Sens., vol. 50,
no. 2, pp. 528-537, 2012.

R. Kawakami, Y. Matsushita, J. Wright, M. Ben-Ezra, Y.-
W. Tai, and K. Ikeuchi, “High-resolution hyperspectral imag-
ing via matrix factorization,” in Proc. IEEE CVPR, Colorado
Springs, Jun. 2011, pp. 2329-2336.

Q. Li, W.-K. Ma, and Q. Wu, “Hyperspectral super-resolution:
Exact recovery in polynomial time,” in IEEE Workshop Stat.
Signal Process., 2018, pp. 378-382.

Q. Wei, J. Bioucas-Dias, N. Dobigeon, J.-Y. Tourneret,
M. Chen, and S. Godsill, “Multiband image fusion based on
spectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 54,
no. 12, pp. 7236-7249, 2016.

H. Liu, R. Wu, and W.-K. Ma, “Is there any recovery guaran-
tee with coupled structured matrix factorizaton for hyperspec-
tral super-resolution?” arXiv preprint, 2019, extended version,
available online at https://arxiv.org/pdf/1907.12728.pdf.

J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente,
Q. Du, P. Gader, and J. Chanussot, “Hyperspectral unmixing
overview: Geometrical, statistical, and sparse regression-based
approaches,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 5,
no. 2, pp. 354-379, 2012.

M. Simdées, J. Bioucas-Dias, L. B. Almeida, and J. Chanus-
sot, “A convex formulation for hyperspectral image superreso-
lution via subspace-based regularization,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 6, pp. 3373-3388, 2015.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G.
Hansen, and W. M. Porter, “The airborne visible/infrared imag-
ing spectrometer (AVIRIS),” Remote Sens. Environ., vol. 44,
no. 2-3, pp. 127-143, 1993.

G. Chander, B. L. Markham, and D. L. Helder, “Summary of
current radiometric calibration coefficients for Landsat MSS,
TM, ETM+, and EO-1 ALI sensors,” Remote Sens. Environ.,
vol. 113, no. 5, pp. 893-903, 2009.

R. Wu, C.-H. Chan, H.-T. Wai, W.-K. Ma, and X. Fu, “Hi,
BCD! Hybrid inexact block coordinate descent for hyperspec-
tral super-resolution,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2018, pp. 2426-2430.

W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader,
A.J. Plaza, A. Ambikapathi, and C.-Y. Chi, “A signal process-
ing perspective on hyperspectral unmixing: Insights from re-
mote sensing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp.
67-81, 2013.

M.-D. lordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse
unmixing of hyperspectral data,” IEEE Trans. Geosci. Remote
Sens., vol. 49, no. 6, pp. 2014-2039, 2011.

N. Gillis, “The why and how of nonnegative matrix factoriza-
tion,” Regularization, Optimization, Kernels, and Support Vec-
tor Machines, vol. 12, no. 257, pp. 257-291, 2014.

484

[15] J. M. Varah, “A lower bound for the smallest singular value of

a matrix,” Linear Algebra and its Applications, vol. 11, no. 1,
pp. 3-5, 1975.

Authorized licensed use limited to: Imperial College London. Downloaded on December 17,2020 at 13:55:29 UTC from IEEE Xplore. Restrictions apply.



